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1. Introduction 
The stability of viscous flow between rotating cylinders with an axial flow 

has been investigated theoretically by Goldstein (1937), Chandrasekhar (1960, 
1962), and Di Prima (1960); and experimentally by Cornish (1933), Fage (1938), 
Kaye & Elgar (1957), Donnelly & Fultz (1960) and Snyder (1962a). As was 
pointed out by Di Prima (1960) there were a number of discrepancies in the early 
work of the 1930’s which were clarified in part by the papers of the 1960’s. 
In  turn, there appear to be certain small detailed differences in the more recent 
papers. In  part it  is these differences with which the present paper is concerned. 
I n  addition, the results of the previous theoretical investigations which are 
limited to the case in which the cylinders rotate in the same direction, are extended 
to the case of counter rotation. 

In  the next section the derivation of the eigenvalue problem is briefly sketched, 
and the differences mentioned above are discussed. The following sections deal 
with two different methods of solving the eigenvalue problem and the extension 
to the counter-rotation problem. 

2. The eigenvalue problem 
Consider two infinitely long cylinders. Let r ,  8 and z denote the usual cylindri- 

cal co-ordinates, and let R,, R,, Ql and Q, denote the radii and angular velocities 
of the inner and outer cylinders, respectively. Let u,, u8 and u, denote the com- 
ponents of velocity in the increasing r ,  8 and z directions, and p the pressure. 
The Navier-Stokes equations admit an exact solution of the form 

aplar = pV2/r, 3pla.z = const., 
u, = 0, u8 = V ( r ) ,  

where p is the density. 
To consider the stability of this steady motion to rotationally symmetric 

disturbances we superimpose disturbances of a form such that the 0 component of 
velocity is 

uo(r, z ,  t )  = V ( r )  + v ( r )  ei(&+hz). (2) 

t Now at the Department of Applied Mathematics, University of Colorado, Boulder, 
Colorado. 
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Substituting in the Navier-Stokes equations, neglecting quadratic terms in the 
disturbance, and making the small gap approximation d = R, - R, g R,, 
leads to the following system of equations : 

{Dz - a2 - $3 + iaRf(x)} (D2 - a2) u + 12iaRu = - a2T'g(z) v, 
{Dz - a2 - ip + iaRf ( x ) }  v = u, 

(3) 

(4) 

( 5 )  

and f ( x )  = 6 ( $ - x 2 ) ,  g ( x )  = &(I+,u)-(~- ,u)z  (6) 

where r = &(Rl + R,) +xd ,  D = d / d x ,  

p = d 2 / v  a = Ad, R = 1 Wav( dlv,  T' = - 4AQld4/v2, 1 
A = (Rg - R;)-l (Q2 Rg - QlR;),  ,U = Q2/Ql, 

are the dimensionless axial and circumferential velocities, respectively. Here 
v is the kinematic viscosity. The parameter T' which depends upon Ql is called 
the Taylor number, and R is the Reynolds number associated with the axial 
velocity. These equations are to be solved subject to the boundary conditions 

u = DU = v = 0 

at x = k 4. A more complete derivation of the system of equations (3) and (4) 
can be found in Chandrasekhar (1961, 979). 

The homogeneous system of equations (3) and (4) coupled with the boundary 
conditions (7) determine an eigenvalue problem. The flow is unstable or stable, 
according as there are or are not solutions for which the imaginary part of /3 
is negative. We consider only the neutrally stable case, imaginary part of p 
equal to zero, in which case we obtain a secular equation of the form 

(8 )  

(7 )  

F ( p ,  a, p, R, T ' )  = 0. 

Mathematically the problem is the following: for given real values of ,U and R 
we wish to determine the minimum positive real value of T' with respect to real 
positive values of a and real values of p. The corresponding values of a and /3 
determine the wavelength and frequency of the disturbance. For R = 0, we have 
the classical Taylor problem with p = 0,  and for R + 0 our solution will represent 
Taylor vortices moving in the axial direction with a wave velocity P/aR, based on 
Wav. For small R it  appears from the observations of Snyder ( 1 9 6 2 ~ )  that such 
a motion does occur, but that with increasing R (say R > 20) the instability is of 
a spiral form. 

When ,U 2 0, the disturbance equations can be further simplified by replacing 
g ( x )  by its average value. The error introduced is negligible when R = 0,  and the 
computations in 9 5 indicate this is also true for R + 0. With this approximation 
equation (3) reduces to 

(0, - a2 - ip + iaRf (%)I (D2 - a2) u + 12iaRu = - a2Tv, (9) 

where T = TI&( 1 +,u). The corresponding secular equation is G(a, R, p, T) = 0. 
With the further assumption that it is permissible to  replace the axial velocity 
by its average value, i.e. f ( x )  = 1, equations (3) and (4) reduce to a system of 
equations with constant coefficients. This final problem was solved approxi- 
mately, but fairly accurately, by Chandrasekhar (1960) and both approximately 
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and exactly by Di Prima (1 960). In  addition Di Prima considered the significance 
of averaging the axial flow, and solved the eigenvalue problem with f(x) not 
averaged by using the Galerkin method. It was found that: (i) in both cases the 
crit'lcal value of T, T,, increases with increasing R ;  (ii) for 0 < R < 5 the variation 
of T, with R is essentially the same for both cases; (iii) for R > 5, T, increases 
morerapidlywith R when aparabolicprofile isused for W ( r ) ;  (iv) the wave-number 
a increases fairly rapidly with R if the average value of W ( r )  is used, but stays 
almost constant if a parabolic profile is used; (v) the dimensionless wave velocity 
P/aR is approximately 0.8 when the average profile is used, and 1.2 when the 
parabolic profile is used. 

The results mentioned above for the variation of T, with R are in reasonable 
agreement with the experimental work of Kaye & Elgar (1957) and Donnelly & 
Fultz (1960). The more recent detailed experiments of Snyder, do, however, 
raise some questions. First, they do confirm that the correct value of PIaR 
is approximately 1.2, and that the critical value of a is relatively constant, which 
shows that it is not permissible to approximate the axial velocity by its average. 
In  addition, however, these experiments indicate that the initial increase of T, 
with R is much more rapid than the theoretical predictions (see figure 3, Snyder 
1962~) .  For example, with T, = 1708 at R = 0, the theoreticalvalue obtained by 
Di Prima a t  R = 2 is T, = 1714 compared to the experimental value of T, = 1835 
at R = 2.2 which was obtained by Snyder. 

Further, Chandrasekhar ( 1962) using a perturbation procedure, and expanding 
in powers of e = 6aR found that = T,(R = 0 )  -t26.5R2 as R -+ 0, with 
a = a(R = 0). This equation would appear to fit the experimental results of 
Snyder much better for small R than those found by Di Prima. On the other 
hand, the fit is not completely satisfactory since the above equation indicates 
that T, is parabolic in R, as it must be, while the experiments indicate that T, 
varies almost linearly with R as R -+ 0. These results raise questions concerning 
the validity of the results obtained by Di Prima (1960) using the Galerkin pro- 
cedure, and also suggest the necessity for a more detailed analysis of the stability 
problem. 

3. The Galerkin method (p a 0) 

The eigenvalue problem defined by equations (9), (4) and (7) can be solved 
approximately by the Galerkin method. In  the usual manner, the functions u 
and ZI are expanded in complete sets of functions which satisfy the boundary 
conditions. The secular equation is obtained by requiring that the error in the 
differential equations be orthogonal to the expansion functions. In  the present 
case the solution can be split into even and odd functions about 2 = 0, the even 
solution being most critical. In  the analysis of Di Prima (1960) the complete 
orthogonal sets? Cn(x), and E,(z) = 24 cos (2n - 1) 7 ~ x  were used for u(x)  and w(x), 
respectively. 

In  the present analysis a new set of expansion functions are constructed as 
f The functions a&) are of the form (cosh A,s)/(cosh *An)- (cos A,s)/(cos *A,), 

where the A, are the positive roots of tmh +A + tan +A = 0. These functions have been 
tabulated by Reid & Harris (1958). 
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follows. It is reasonable to expect that the approximating functions can be 
improved if the effect of the axial flow is incorporated in them. To do this, we 
consider equations (9) and (4) with f(x) replaced by its average value, and con- 
struct the expansion functions uE,,(x) and W ~ , ~ ( X )  as solutions of 

(10) 
(11) 

subject to the boundary conditions (7). In  a sense the present scheme is similar 
to the procedures in vibration problems where the eigenfunction of a complicated 

Investiga- 

(D2 - a2 - i/3 + iaR)  (D2 - a2) uE,, = Em(x), 
(D2 - a2 - i/3+ iaR)  vC,m = Cm(x),  

tion R a0 P P/aR Tc 
1 1 3.12 3.65 1.17 1709 
2 1 . 3-12 3.65 1-17 1710 
1 2 3.12 7.30 1.17 1713 
2 2 3.12 7.30 1.17 1714 
1 5 3.12 18.25 1.17 1741 
2 5.17 3.12 18.9 1.17 1744 
1 10 3.13 36.59 1.17 1840 
2 10.34 3.13 37.8 1.17 1852 
1 20 3.15 73.43 1.17 2247 
2 20-67 3.15 75-8 1-16 2293 
1 40 3.22 148.62 1.15 4026 
2 40 3.2 147-7 1.15 4066 
1 60 3.13 213.26 1.14 7459 
2 60 3.15 215.7 1-14 7563 

TABLE 1. Critical Taylor numbers and corresponding values of a, and p/aR for assigned 
values of R. Investigations 1 and 2 refer to the results of the present analysis and those 
of Di Prima (1960), respectively. 

system is expanded in terms of the eigenfunctions of a related simpler system. 
Here we use approximate eigenfunctions of the sys$em with the axial velocity 
replaced by its average to solve the same problem with a parabolic profile for the 
axial velocity. 

The functions u ~ , ~  and vC,, are complex-valued functions of x, and are clearly 
rather complicated. They are given in the Appendix. Various inner products 
which are required in evaluating the secular determinant are recorded in a report 
by Krueger & Di Prima (1963). Computations have been carried out on the 
CDCl604 computer at the University of Wisconsin for a range of values of R 
up to 60. One-term and two-term series (4 x 4 determinant) were used for u 
and v. For fixed R and a, /3 was chosen so that the value of T for which the secular 
determinant vanished was real. Then /3 was varied to find the minimum positive 
real T, which in turn was minimized over all real positive a. For R < 20 the 
maximum percentage change between the values of T, for the one- and two-term 
approximations is less than 8 %. For larger R the change is much greater, for 
example, at R = 40 the change is from 3166 to 4026. 

The results using the two-term approximation are tabulated in table 1, along 
with the results obtained earlier by Di Prima (1960). As can be seen the two sets 
of results are in very close agreement, particularly so for small R. Thus if the 

34-2 
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Galerkin method is used to solve the eigenvalue problem, satisfactory results 
can be obtained with the simple functions E J x )  and C,(x). On the other hand, the 
present investigation still does not indicate a behaviour of T, with R as suggested 
by the perturbation theory of Chandrasekhar (1962). This is considered in the 
next section. The present results are discussed in more detail in $6, where they 
are also compared with the experimental work. 

4. Fourier series solution 
Eliminating u between equations (9) and (4) leads to the sixth-order equation 

LOU = - a2Tv - ~ s L ~ v  + &2L2v, 
where 

E = 6aR, 

Lo = (D2-a2-i/3)2(D2-a2), 

Ll = ( 0 2  - a2 - i P ) 2  ( 0 2  - a2) (4 - x2) + [( - x2)  ( 0 2  - a2) + 2](D2 - a2 - ip), 
L2 = [(Q - 2?) ( 0 2  - u2) + a] (Q - 39). 

The boundary conditions are 

v = D2v = D(D2-u2-iP)v = 0 at x = f i. (14) 

Chandrasekhar (1962), neglecting terms 0 ( e 2 ) ,  solved equation (12) with the 
boundary conditions (14) by a perturbation procedure obtaining 

T, = 1708+26.5R2 and p = 3-63R as R --f 0 for a = 3.1. 

In  this section we will solve the eigenvalue problem defined by equations (12) 
and (14) with and without terms O(e2) by a Fourier series technique. 

An appropriate Fourier series for v(x)  is 
m 

The boundary conditions v = D2v = 0 a t  x = & 4 are automatically satisfied; 
the boundary conditions D(D2 - a2 - ip) v = 0 at x = & +introduce the constraint 

m 

where pm = (2m- 1) n-. Substituting the series (15) for v(x)  and similar series 
for the higher derivatives of 'u in equation (12), multiplying the resulting equation 
by Em(x), and integrating from - + to + gives 

{( pg  + u2 + i/3)2 ( pg  + a2) - a2T} V, 
= 2~pma(-l)m+1+i~(Em,Llv)-s2(E,,L2v) (m = 1,2,  ...). (17) 

Here a = 2D4v(+) and (Em, Llv) denotes the integral of Em Llv from - 8 to +. 
Since (E,,Llv) and (Em,L2v) involve all of the V,, equation (17) represents 

infinitely many equations in infinitely many unknowns. These equations 
were solved in the following manner. For E = 0, equation (17) can be solved 
exactly for V,/a as a function of a, 8, and T .  Using this set of V,/a the inner 
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products (Em, L, v) and (Em, L, v) were evaluated, and equation ( 1  7 )  was solved 
for a new set of Vm/a with E + 0. This type of iteration process was carried out 
a sufficient number of times, and for a sufficiently large m so that I' could be 
evaluated accurately. Precisely a sufficient number of terms were taken so that 
l' could be evaluated correct to terms O( lo-*), and T, was determined to within 
f 1. For fixed a, T and p were varied to find the smallest positive real value of 
T and real p for which equation (16)  is satisfied. 

The computations are extremely lengthy and for this reason the minimization 
over a was not carried out. For a = 3.1, the values of T, for R = 1 and R = 2 
with and without terms 0(e2) are given in table 2. Also included are the results of 
the previous section using the Galerkin method and the results using Chand- 
rasekhar's perturbation theory. The values of /3 differ only in the third significant 
figure and hence are not given. The results for the Galerkin method and the 
Fourier series solution with all terms retained are in excellent agreement. Also 
it is clear from the results with and without terms O(@) that at R = 1 it is not 
permissible to neglect terms 0(e2). This shows that the perturbation formula given 

T, 
A 

7-- - 
Perturbation Terms O(e2)  Terms O(@) Galerkin 

R 1708 f 26.5 R2 neglected retained (a  = 3.12) 

1 1734.5 1737 1710 1709 
2 1814 1825 1713 1713 

TABLE 2. Critical Taylor number for assigned values of R, a = 3.1. 

by Chandrasekhar cannot be used a t  R = 1. This is not surprising since for R = 1, 
a = 3-1, the value of E is 18.6. 

Consider now the perturbation formula given by Chandrasekhar (1962). 
This was derived by expanding h = a2T in powers of E = 6aR;  thus 

(see Chandrasekhar 1962: equation (50) ,  with (T = -p). For fixed a ,  A, and A, 
were determined as complex-valued functions of p. With the above series ter- 
minated after the A, term, the condition imaginary part of h = 0 determines 
J as a function of R. With this value of p, the real part of h is computed giving the 
result T = 1708 + 26.5R2 for a = 3.1. However, note that if the A,(a, p) term is 
retained and if the real part of &(a, p) starts out as a constant, then this will also 
contribute to the real part of h correct to terms O(R2). Thus to show that the co- 
efficient 26.5 is correct it is necessary to show that the real part of A, does not have 
a constant term which is real. It is a fairly difficult task to compute the second 
term in the perturbation series, and this has not been done. However, the present 
computations using the Fourier series technique do suggest very strongly that the 
coefficient 26.5 is much too large. This certainly supports the possibility that the 
real part of A, does start out with a constant term; and hence that the perturba- 
tion formula 1708 + 26.5R2 is not correct even in the limit R -+ 0. 
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5. The Galerkin method ( p  < 0) 

The results of the two previous sections indicate that the eigenvalue problem 
(9), (4) and (7) can be solved satisfactorily by using the Galerkin method with the 
simple functions E,(x) and Cm(x). For R = 0 it is also known that the Taylor 
stability problem can be solved for - 1 < p < 1 by using the Galerkin method 
with only a few terms of simple expansion functions. Thus it is reasonable to 
expect that satisfactory results can also be obtained for R > 0, p < 0 by using the 
Galerkin method. 

Consider then the eigenvalue problem defined by equations (3), (4) and (7). 
The solution can no longer be split into even and odd functions because of the 
appearance of the linear function g(x). Thus the following series are used for u 

(18) 1 
and v: M N 

4%) = Z ArnCrn(x)+ S BnSn(x), 
m= 1 n=l  

M N 

m= 1 n=l  
v(x) = C arnErn(x)+ S Pnpn(x)* 

Here F,(x) = 29 sin 2nn-x, and the Xn(x) are the odd functions satisfying 
S,= DSn = 0 at x = *#, 

which have been tabulated by Reid & Harris (1958). 
Computations have been carried out for 0 < R < 40 and - 1 < p < 1 using the 

series (18) with M = 1, N = 1 and M = 2, N = 1. The results are tabulated in 
table 3 where Ti and Ti indicate the results for Jf = 1, N = 1 and M = 2, N = 1, 
respectively. For R = 0 the maximum disagreement with the ‘exact’ results 
obtained by Chandrasekhar (1954) is 1-2 % at p = - 1. In the range 0 < R < 40, 
both Th and a, increase with R for all values of p considered. The ratio of the wave 
velocity to the average axial velocity PIuR, decreases slightly with increasing 
R and decreasing p. This effect is most noticeable for p = - 1. The variation of 
T; with R for different values of p is in general agreement with some unpublished 
experiments of Snyder (1962b) except for the differences in the manner in which 
TA behaves as R -+ 0. These differences are the same as those mentioned earlier 
for p = 0. 

For ,u > - 0.25 the results with Q ( r )  replaced by its average value are still in 
close agreement with those obtained using a linear profile. Even at p = -0.5, 
R = 20, the percentage difference based on TL is only 6-7 %. 

6. Conclusions 
In  figure 1 the variation of T, (the eigenvalue problem (9), (a), (7)) with R, for 

R + 0,  for the various computations are shown. Also shown are the experimental 
points of Snyder ( 1 9 6 2 ~ )  for p = 0 and some recent unpublished experiments of 
Schwarz, Springett & Donnelly (1963) for p = 0. As has been mentioned earlier 
the solution of the perturbation equations with and without terms O(e2) by the 
Fourier series technique would appear to confirm the correctness of the results 
obtained using the Galerkin method. The discrepancy between the experimental 
results of Snyder and Schwarz et al. is not yet understood. 
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a 
3.11 
3.11 
3.11 
3.15 
3.15 
3.20 
3-11 
3.11 
3.11 
3.13 
3.15 
3.17 
3.11 
3.13 
3.13 
3-13 
3.15 
3.17 
3.12 
3.13 
3.13 
3.13 
3.17 
3.20 
3-15 
3.15 
3.15 
3.15 
3.20 
3.20 
3.15 
3.17 
3.20 
3.22 
3.25 
3.30 
3.40 
3.40 
3.40 
3.45 
3.50 
3.70 
4.0 
4.0 
4.0 
4.0 
44 1 
4.2 

BlaR 
- 

1.17 
1.17 
- 
- 

1.15 
- 

1.17 
1.17 
1.17 
1.17 
1.15 
- 

1-17 
1.17 
1.17 
1.17 
1.15 
- 

1.17 
1-17 
1.16 
1.16 
1.15 
- 

1.17 
1.17 
1.17 
1.16 
1.15 
- 

1.17 
1.17 
1-18 
1.16 
1.13 
- 

1.15 
1-15 
1.15 
1.14 
1.11 

1.14 
1.11 
1.10 
1.10 
1.07 

- 

Ti 
1,709 
1,710 
1,742 
1,842 
2,255 
4,068 
2,277 
2,279 
2,321 
2,455 
3,005 
5,419 
3,727 
2,730 
2,780 
2,940 
3,598 
6,485 
3,392 
3,395 
3,458 
3,675 
4,472 
8,049 
4,465 
4,468 
4,550 
4,809 
5,873 

10,515 
6,420 
6,424 
6,538 
6,901 
8,384 

14,639 
10,529 
10,536 
10,706 
11,237 
13,334 
20,733 
18,895 
18,902 
19,090 
19,662 
21,746 
27,866 

T P ;  
0.99 
0.99 
1.0 
1.02 
1.10 
1.14 
0.99 
0.99 
1.0 
1-02 
1.10 
- 

- 
- 
- 
- 
- 
- 

0.99 
0.99 
0.99 
1.02 
1-10 

0.99 
0.99 
1.0 
1.02 
1-03 

0.99 
0.99 
1.0 
1.01 
1.03 

0.99 
0.99 
1.0 
1.01 
1.03 

0.99 

- 

- 

- 

- 

- 
- 
- 
- 
- 

TABLE 3. Critical Taylor numbers T and corresponding values of a and PfaR 
for assigned values of p and R. 
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The differences between the present theoretical results and the experimental 
results of Schwarz et al. can be explained in part by correcting for gap size. The 
experiments of Schwarz et al. were run for a value of R,/R, = 0.945. It has 
been shown by Walowit, Tsao & Di Prima (1 964) that for R = 0 and RJR, = 0-95, 

1860 r 

I820 1 
1800 I 
I T, 1780 

1760 
A 
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/ 
I 

/ 
A /  

/ 

/ 
/ 

/ 
/ 

/ 
I / 

1700 I I I I I 
0 1 2 3 3.5 

R 
FIGURE 1. The variation of the critical Taylor number T, with the axial Reynolds number 
R as R + 0. The solid curve refers to the present results using the Galerkin method. The 
short dashed curve refers to the perturbation results of Chandrasekhar (1962). The Fourier 
series results with terms O ( @ )  neglected and retained are denoted by 0 ’ s  and 0 ’ s  respec- 
tively. The experimental results of Snyder (1962a) for ,u = 0, RJR, = 0.948 and Schwarz, 
Springett & Donnelly (1963) for p = 0, RJR, = 0.945 are denoted by A’s and x ’8, 
respectively. 

T, = 1755 in contrast to a value of 1708 for RJR, + 1. Thus for this geometry 
the correctionfor gap size when R = 0 is 46. Although this correction is not neces- 
sarily independent of R, it  is interesting to note the results when the theoretical 
curve of T, as a function of R is corrected by this amount. The curves with and 
without the correction for gap size are shown in figure 2. They essentially bracket 
the experimental results of Schwarz et al. Also shown are the experimental 
results of Snyder. 

The variation of wave number with R is shown in figure 3. The results are in 
good agreement with those of Snyder for R i 20. It should be remembered that 
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Tc 
FIGURE 2. The variation of the critical Taylor number T, with the axial Reynolds number 
R. The solid curve refers to the present results using the Galerkin method. The dashed 
curve refers to  these results corrected for a gap size RJR, = 0.95. The experimental 
results of Snyder (1962a) for ,u = 0, RJR, = 0.948 and Schwarz, Springett 8z Donnelly 
(1963) for p = 0, RJR, = 0.945 are denoted by A’s and x ’s respectively. 

n 

2.00 
0 10 20 30 40 50 60 70 

R 
F I G ~ ~ E  3. The variation of the critical wave number a, with the axial Reynolds number R 
for p 2 0. The experimental results of Snyder (1962a) for p = 0, RJR, = 0.948 are 
indicated by A’s. 
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for R greater than approximately 20 the instability, as reported by Synder, 
is of a spiral form rather than of the type considered here. The results for the wave 
velocity are also in good agreement with the measurements of Snyder, both results 
indicating that the wave velocity is a slowly decreasing function of R, being about 
1*17Wa’,, a t  R = 1. 

For ,u < 0, the results are qualitatively the same as for p > 0. 
Finally, the present results appear to show that the stability of flow between 

rotating cylinders to rotationally symmetric disturbances can be solved in a 
satisfactory manner by using the Galerkin method. 
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Appendix 

boundary conditions (7) are 
The uE,, and functions which satisfy equations (10) and (1 1) and the 

where S2m-1 = (p: + u2) (p: + q2) + 12iuR, 2 = t1 tanh itl - t2 tanh it2, 
$m = A:-@, p, = (2m- 1)n, q 2  = u2+i(,8-uR), 

and Cl, &, -tl, - E2 are the roots of the equation 
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@?-a2) ( t 2 - q 2 ) +  12iuR = 0. 
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